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Libertador 8250,1429 Buenos Aires, Argentina 
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Abstract. We present a method for obtaining the conductance within the linear response 
approximation of a disordered system of finite cross section described by a tight-binding 
Hamiltonian. This methodis an extension of previous work in which we proposed a numerical 
algorithm for evaluating the Kubo formula in the spirit of the recursion method. We 
obtain simple recursive equations for the conductance that can be easily computed. As an 
application westudy the problemof ballistictransport throughaconstrictionusingaconfining 
model potential that allows us to investigate the dependence of the conductance quantisation 
as a function of Fermi energy, gate voltage and channel length. It is found that the con- 
ductance steps as a function of gate voltage are sensitive to the channel length. The possible 
extensionof thiswork foruseinstudying theac transport in thesesystemsis brieflydiscussed. 

1. Introduction 

The problem of ballistic transport in small devices has recently received considerable 
attention. In particular, several theoretical studies of the conductance quantisation 
observed when narrow constrictions are imposed on a two-dimensional electron gas 
have been presented [l-71. Most of these studies [1-4] are based on a Landauer-type 
picture for the conductance in which the transmission coefficients are calculated by 
matching the wave functions between regions in which the confining model potential is 
uniform. This approach may require a great deal of computing time when one wishes to 
study the effects of disorder or confining potentials of arbitrary shape. 

On the other hand, a different approach based on linear response theory in a tight- 
binding representation was proposed by Magek and Kramer [ 6 ] .  In their formulation 
the non-locality effects associated with a finite system are included by considering a finite 
disordered region, where the driving electric field is constant, embedded in an infinite 
perfect conductor where the electric field vanishes. This approach has been shown to be 
equivalent to the Landauer picture in its simpler form [8], but it has the advantage that 
it can be generalised to give the AC conductance. We shall limit ourselves to this 
formulation in the following. 

In previous work [9] (hereafter referred to as I) we proposed a numerical algorithm 
for evaluating the Kubo formula for the conductivity in a tight-binding model via a set 
of recursive equations. The key point of our procedure was to note that a generalised 
matrix form of Dyson’s equation may be written for a product of Green functions that 
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essentially gives the conductivity. In the case of one-dimensional systems this leads to a 
continued fraction expansion of the relevant matrix elements, similar to what is found 
in the recursion method of Haydock [ 101, 

The aim of the present work is to extend this idea to the case of strips or wires of 
finite cross section, so as to model the problem of transport in mesoscopic devices. As 
we show in the next section, the simplicity of the recursive equations that arise from the 
present formalism makes it convenient when compared to previous methods, such as 
those presented in [ 111 and [ 121. 

On the other hand, as an application of our method, we present some new results 
for the conductance through a narrow channel in which we have investigated the effects 
of a non-uniform model potential. 

2. Formalism for the conductance 

We consider a tight-binding Hamiltonian on a two-dimensional square lattice. For 
simplicity we assume interactions only between first neighbours with a fixed value for 
all sites, taken as the unit of energy. The lattice constant is taken as the unit of length. 
Only the on-site elements of the Hamiltonian are allowed to vary throughout the system. 

We wish to obtain the DC conductance r, in the x direction for a strip of width M and 
length N as indicated in figure 1. We assume free boundary conditions on the edges at 
y = 0 and y = M and add perfect semi-infinite conductors to both ends at x = 0 and x = 
N .  As in I, we define first the operators: 

c, = [x ,  HI (1) 

Wl, 2 2 )  = Gk,)C,G(z,) (2) 

and 

where G(z) = (2  - k l - l  is the Green function operator. On making this replacement 
in the Kubo formula, the conductance at zero temperature is given by 

T,(E) = (2e2 /hN2)  Tr[C, Re(S+(E) - S-(E))] (3) 
where Tr denotes trace operation, E is the Fermi energy and S'(E) = 
lim,,,, S(E + iq, E & iq). 
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We assume that the position operator in (1) is restricted to the sites on the disordered 
region, which is equivalent to taking the applied electric field as zero at the perfect leads 
attached to the strip [ll]. Note that the particular choice made for the boundary 
conditions allows us to take q effectively equal to zero [ 121, 

For the case of a strip it is convenient to work with the projection operators defined 
as 

which project onto the subspace associated with a transverse layer at x = j .  Then, we 
use the notation Ai, to refer to the projected operator PjAPk. In this way, equation (3) 
may be written as 

The recursive equations for the conductance are obtained noticing that G and S 
satisfy a set of coupled integral equations. If we use the decomposition H = h + V, 
where h is the on-layer part of H ,  and V describes the coupling between contiguous 
layers, then 

where g(z) = (2 - h)-', and, making the replacement in ( 2 ) ,  

These two expressions can be formally put together in a single matrix equation: 

where the generalised operators g , G and V are given by 

Note that each matrix element of a generalised operator is itself a 2M x 2M matrix, 
e.g. 

Equation (7) can now be solved recursively, in a way that is formally equivalent to 
the procedure described in I for a one-dimensional problem. The conductance is related 
to the matrix elements Sj,j+l, which are included in Gj,j+l. These can be obtained if we 
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divide the strip in two semi-infinite regions: one starting from x = j + 1 to the right and 
the other from x = j to the left. Then, from (7), we have 

Gjj+' = (1 - GiLVLRGiR,1VRL)-'G4VLRGiR+I (8) 

where 

M O  l M  

" , ,=( fM 1,) vRL=(-lM 1,) 

and G) and G;, correspond to the surfaces of each of the semi-infinite regions and are 
given by the recursive matrix equations 

The initial values for the iteration of equations (9) depend on the choice of the 
boundary conditions. In our case these must be 

with Go(z) = (z - ho - Go(z))-'. 
Go(z) is easily obtained if the eigenvectors of ho are known. 
It is important to note that the perfect leads attached to the strip may have a width 

different from M ,  and thus the transition from a wide to a narrow channel may be 
modelled. 

A fundamental point in our method is that the use of generalised operators gives a 
compact form to the recursive equations without introducing further difficulties into the 
computations. This is so because one has to deal with matrices of the form 

A1 0 
A = ( A ,  A,) 

whose inverse A-l is easily given in terms of A;' and A;' by 

Note that for z1 = z2, S )  and Si"+' are identically equal to zero for every j .  Finally, 
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Figure 2. (a) Boundary values for the model potential for the channel at y = 0 and y = M .  
( b )  The full shape of the potential. 

the results obtained for G) , GF+, , S )  and S,?+l may be introduced in equation (8) and 
then, using (4), the complete expression for the conductance reduces to 

where Dj i+ l ( z )  = (1 - G ) ( z ) G ~ + ~ ( z ) ) - ~ .  

To deduce expression (11) we have used the symmetry properties 

= - S +  I+ 11 ( S i + , ) +  = - (S;+lj)* 
that arise from the definition of the operator S .  

An additional simplification to (11) comes from the fact that, in the DC limit, all terms 
in the sum are equal. This is a consequence of current conservation [SI and can be verified 
by algebraic manipulations. Thus, the more convenient choice is to take j at one of the 
ends of the strip ( j  = 0 o r j  = N>. 

3. Model calculations for the conductance through a constriction 

Conductance quantisation is experimentally observed by imposing an ‘electrostatic 
squeezing’ onto a two-dimensional electron gas in a GaAs-AlGaAs heterojunction 
[13,14]. In this technique a metal gate is deposited on top of the heterojunction and the 
width of the constriction is controlled by the application of a negative voltage to the 
gate. 

In order to represent the effective potential for the electrons in the constriction 
we use the solutions of Laplace’s equation for the strip with the following boundary 
conditions: we assume that the potential drops to zero on the perfect leads at x = 0 and 
x = Nand assume that it takes a value U ,  proportional to the gate voltage, at the edges 
on they direction. The gate value U is not reached discontinuously, but there is a linear 
increase from 0 to U in a distance D, as shown in figure 2(a). The resulting model 
potential for the strip is plotted in figure 2(b). 
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Figure3. Conductance as a function of Fermi energy for N = 21, M = 10, D = 6 and different 
values of U. (a )  Boundary leads of width M .  ( b )  Boundary leads of width 2M. 

It is clear that this is only a rough approximation to the real potential as we are 
neglecting the screening by the electron gas. This will certainly reduce the electric field 
inside the channel and could be introduced in the model by means of an effective 
dielectric constant E .  However, we have verified that the results discussed below are not 
sensitive to this constant except for via a change in the U-scale. 

We analyse first the dependence of the conductance on the width of the perfect 
leads at both ends of the strip. Figure 3(a) corresponds to the case where there is no 
discontinuity in the width (leads of width M ) .  This figure plots the conductance against 
Fermi energy for different values of U .  As expected, perfect quantisation occurs for U = 
0 and the conductance steps become more rounded for increasing values of U .  The same 
results but for boundary leads of width 2M are shown in figure 3(b) .  For U = 0 the 
conductance presents a resonant structure due to internal longitudinal reflections in the 
channel, as was also noted by other authors [l, 21. Rather surprisingly these resonances 
are completely washed out for U different from zero. Comparing figures 3(a) and 3(b)  
we found that the width of the perfect leads plays no role in this case. 

It is important to note that this particular dependence on the widths of the leads 
could be showing the limitations of the linear response approach. The qualitative 
analyses of this problem by Isawa [15] and Landauer [16] indicate that conductance 
quantisation is a property of electrons in a narrow channel connected to much wider 
leads, and that the conductance must diverge when the width of the leads is comparable 
to the channel width. This divergence does not appear within the linear approximation 
considered here. 

We now discuss the results for the conductance as a function of U for fixed Fermi 
energy, in a way that can be more directly related to the experimental observations. The 
Fermi energy is fixed somewhere below and near the band centre ( E  = 0) where the 
effective mass is small. Figure 4 shows the last five or six steps before pinch off for 
different width to length ( M / N )  relations and D taken as N / 2 .  

It can be seen that the step width is reduced as U increases for the case of a long 
channel (N > M ) ,  while the opposite behaviour is found for a short channel ( N  = M ) .  
The observations of van Wees et a1 [13] correspond to this latter behaviour, which may 
be attributed to the particular geometry of the point contacts. 
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Figure 5. As figure 4, but for D = 11. 
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Figure 6. As figure 5, but for E = 0. 

When iV is increased for fixed M and D the potential tends to be more uniform both 
in the transverse and in the longitudinal directions, resulting in a better definition of the 
steps as shown in figure 5 .  

Finally we show in figure 6 similar results for EF = 0. In this case, and also for higher 
Fermi energies, the steps are rather distorted by resonant peaks. These resonances 
cannot be simply analysed in terms of longitudinal reflections as they depend on the 
detailed form of the potential inside the channel. It should be possible to observe these 
effects provided that the electron density is varied by means of a dual gate device, such 
as those used in recent experiments on one-dimensional electrons [17,18], but for 
channels short enough to ensure ballistic transport. 

4. Conclusions 

We have extended the ideas presented in I in order to calculate the conductance in the 
case of systems of finite section. Starting from a generalised matrix form of Dyson's 
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equation one arrives at a simple set of recursive equations for the conductance that can 
be solved by iteration. Each iteration is computationally equivalent to inverting a matrix 
whose dimensions depend on the width of the system considered. We found no problems 
of numerical instability using this procedure. 

On the other hand, we have proposed a model for the quantum transport through a 
narrow constriction assuming that the potential for the electrons in the channel may 
be approximated by a solution of Laplace’s equation. This model predicts quantised 
conductance steps as a function of gate voltage that are sensitive to the channel length 
and to the Fermi energy, as described in the previous section. These results help to 
clarify the relation between the qualitative shape of the observed conductance steps and 
the geometrical restrictions imposed on the electrons in the experimental devices. 

The present formalism could be also used to study the AC transport in these systems. 
In particular, MaSek and Kramer [6] have demonstrated the appearance of oscillations 
in the AC conductance for freely propagating electrons. The object of future work will 
be to study whether these oscillations remain for a non-uniform potential. 

We believe that, in spite of its limitations, the linear response approximation is useful 
for the study of ballistic transport in finite systems, since it provides a simple scheme for 
performing calculations that are in agreement with the available experimental data. 
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